βˆ‘ MathFormulas
Home Algebra Geometry Trigonometry Calculus Statistics Physics
EN English ES EspaΓ±ol DE Deutsch FR FranΓ§ais PT PortuguΓͺs
xΒ²

Algebra Formulas

Essential algebraic formulas including quadratic equations, logarithms, and polynomial expressions.

Quadratic Formula

x=βˆ’bΒ±b2βˆ’4ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}x=2aβˆ’bΒ±b2βˆ’4ac​​

Solves quadratic equations of the form axΒ² + bx + c = 0.

Slope Formula

m=y2βˆ’y1x2βˆ’x1m = \frac{y_2 - y_1}{x_2 - x_1}m=x2β€‹βˆ’x1​y2β€‹βˆ’y1​​

Calculates the slope of a line between two points.

Distance Formula

d=(x2βˆ’x1)2+(y2βˆ’y1)2d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}d=(x2β€‹βˆ’x1​)2+(y2β€‹βˆ’y1​)2​

Finds the distance between two points in a coordinate plane.

Binomial Theorem

(a+b)n=βˆ‘k=0n(nk)anβˆ’kbk(a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}b^k(a+b)n=βˆ‘k=0n​(kn​)anβˆ’kbk

Expands the power of a binomial expression.

Arithmetic Sequence

an=a1+(nβˆ’1)da_n = a_1 + (n-1)dan​=a1​+(nβˆ’1)d

Finds the nth term of an arithmetic sequence.

Geometric Sequence

an=a1β‹…rnβˆ’1a_n = a_1 \cdot r^{n-1}an​=a1​⋅rnβˆ’1

Finds the nth term of a geometric sequence.

Midpoint Formula

M=(x1+x22,y1+y22)M = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)M=(2x1​+x2​​,2y1​+y2​​)

Finds the midpoint between two points in a coordinate plane.

Sum of Arithmetic Series

Sn=n2(a1+an)S_n = \frac{n}{2}(a_1 + a_n)Sn​=2n​(a1​+an​)

Calculates the sum of an arithmetic sequence.

© 2025 Mathematical Formulas. All rights reserved.